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ABSTRACT

For the case of homogeneous, isotropic magnetic field fluctuations,

it is shown that most theories which are based on the quasi-linear and

adiabatic approximations yield the same integral for the Fokker-Planck

coefficient for the pitch angle scattering of cosmic rays. For example,

despite apparent differences, the theories due to Jokipii 
and to Klimas

and Sandri yield the same integral. It is also shown, however, that

this integral in most cases has been evaluated incorrectly in the past.

For small pitch angles, the errors in previous evaluations are for-

tuitously of minor importance. For large pitch angles, however, these

errors become more significant, and for pitch angles of 90', the ac-

tual Fokker-Planck coefficient contains a delta-function which has

been overlooked in the past. The implications for these corrections

on our ability to relate cosmic-ray diffusion coefficients to ob-

served properties of the interplanetary magnetic field are discussed.
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Introduction

In recent years a number of seemingly different theories have

been developed for relating the cosmic-ray diffusion tensor to ob-

served properties of the interplanetary magnetic field (e.g. Jokipii,

1966, 1967, 1968, 1971, 1972; Hall and Sturrock, 1967; Hasselmann and

Wibberenz, 1968; Klimas and Sandri, 1971, 1973a,b). These theories

are derived by using versions of both the quasi-linear and the adia-

batic approximations. In the quasi-linear approximation the inter'

action between the particles and the random magnetic field is assumed

to be sufficiently weak so that to lowest order of interest a particle

executes an unperturbed helix about the mean field while interacting

with the random field. In the adiabatic approximation the cosmic-ray

distribution function is assumed to vary on a time scale which is

longer than and distinct from the time scale over which a particle

experiences a significant interaction with the random magnetic field

(see Appendix A to this paper for details concerning how these approxi-

mations are used, and for conditions under which they are valid).

In this paper we show that despite apparent differences there are

substantial areas of agreement between the various theories. For ex-

ample, we show that in the case of magnetic field fluctuations that are

homogeneous and isotropic the theories due to Jokipii (1966) and to

Klimas and Sandri (1971, 1973a,b) yield the same basic integral for

calculating the Fokker-Planck coefficient for pitch angle scattering

(<(Ap)2 >/At, where 4 is the cosine of a particle's pitch angle).

We also point out, however, that this integral for <(A4)2 >/At in
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most cases has been evaluated incorrectly in the past. For example,

there is no formal justification for the approximations due to Jokipii

(1966, 1971), which permit this integral to be expressed simply in

terms of a one-dimensional power spectrum of magnetic field fluctua-

tions, evaluated at a resonant wavenumber. By using both analytic and

numerical techniques, we correctly evaluate <(AP2) >/At for a general

form of the power spectrum, which should provide a good fit to observed

power spectra. In the limit of low rigidity, where the ratio of the

correlation length for field fluctuations to the particle's gyro-radius

is large,,the correct result for <(Ap)2 >/At differs from that due to

Jokipii (1966) by a factor of p (for p 0). At all but very small

values of p, this correction will introduce only a small numerical

change in predicted values of <(AP)2 >/At. However, in certain schemes

for averaging <(Ap)2 >/At over p, and for, forming the diffusion coefficient

for propagation parallel to the mean field (Jokipii, 1966, 1971; Earl,

1973), this extra factor of p introduces strong divergences as P-0.

These divergences no doubt result from the inadequacies near p=0 of

the quasi-linear and adiabatic approximations. We also show that

quasi-linear/adiabatic theory does not in general predict that

<(Ap) 2 >/At =0 at p =0 (e.g. Jokipii, 1966, 1971) or that <(Ap)2 >/At

diverges continuously to infinity as p-*0 (Hasselmann and Wibberenz,

1968). Rather, this theory predicts for physically realistic power

spectra that < (Ap) 2 >/At contains a delta-function, 6 (p). Finally,

we discuss how the above corrections affect our ability to determine

an accurate diffusion coefficient for propagation parallel to the mean
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field, and how they affect our ability to eliminate the inadequacies

in current quasi-linear/adiabatic theory.

Agreement Among the Theories

The formula for < (Ap)
2 >/At due to Jokipii (1966) contains a

minor algebraic mistake. In Appendix A to this paper we rederive the

correct expression for <(Ap)2>/At that results from applying the quasi-

linear and adiabatic approximations. We follow here procedures very

similar to those used by Jokipii (1966). The resulting < (AP)
2 >/At

for homogeneous, isotropic field fluctuations, which is the case con-

sidered commonly by Jokipii (1966) and Klimas and Sandri (1971, 1973a,b),

is given by

< (A) > - (l--4)y ev odx[cos(eX)[2b(r/c)+p a(r/Xc)] - p2a(r/Xc)] (1)

At Xc

Here e = Xc/rg, the ratio of the correlation length of the field fluc-

tuations to the particle's gyro-radius; v is particle speed; and

TP = B rs/B 2 is the ratio of the mean square field strength to 
the

mean field strength squared. The functions a and b of the scaler

quantity r/Xc are the arbitrary functions that appear in 
the two-point

correlation tensor for homogeneous, isotropic fluctuations (Batchelor,

1956):

Cij () = < Bi()Bj(R+r) >/TPBo2 (2)

= a(r/Xc)rirj + b(r/Xc)6ij 
(2)

The functions a and b in (1) are to be evaluated at
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2(p2) 1r/ 2  + (1 - cos(eX))] - [X2 + p2 (3)=Xe 2  (1 ) I - (3)

which is the linear distance from a point in a particle's helical orbit

along the mean field (chosen to be the origin) to the particle's posi-

tion at a dimensionless time X = vt/c later.

In the expression for < (AP)2 >/At due to Jokipii (cf. equation (18)

in Jokipii (1966) or equation (32) in Jokipii (1971)) the sign of the

second term containing a(r/Xc) in (1) is incorrectly positive. Jokipii

(1966, 1971) subsequently neglects these terms containing a(r/Xc) so

that the formulas for < (A)2 >/At in terms of the one-dimensional

power spectrum, which are normally attributed to Jokipii, are un-

altered by the correction. However, as we discuss below, it is

incorrect to neglect these terms containing a(r/Xc) at low rigidities,

where e l.

Klimas and Sandri (1971, 1973a,b) have also attempted to relate

the diffusion tensor to observed field properties. Unlike Jokipii

(1966, 1967, 1968, 1971, 1972), Klimas and Sandri (1971, 1973a,b) average

first over pitch angle (on assuming that the particle distribution

function can be expanded in terms of Legendre polynomials), and then

they integrate with respect to time, i.e. they integrate over X from

0 to m. In Appendix B to this paper, we show by reversing the order

of integration that Klimas and Sandri find a diffusion coefficient

for propagation parallel to the mean field:
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2v2 1 (1-2)n evK = d dX(cos(eX)[2b(r/Ic ) + p
2a(r/Xc)] - p2a(r/Xc

(4)

The first integral in (4), over X, can be identified with <(A)2 >/A t

given in (1). The second integraL, over p

2vK 1 < ( )2
KII = d (5)

is identical with equation (4) in Jokipii (1968) or equation (46) in

Jokipii (1971), and it performs an averaging of < (Ap)2 >/At over pitch

angle when the particle distribution function is expressed as an expan-

sion in Legendre polynomials. The full expressions for KI and

< (Ap)2 >/At due to Klimas and Sandri (1971, 1973a,b) are then identical

with the corresponding corrected results due to Jokipii (1966, 1968, 1971).

However, Klimas and Sandri (1971, 1973a,b) have analyzed these integrals

(e.g. (4)) in more detail than Jokipii (1966, 1971).and have been able

to show formally that within the context of the quasi-linear approxi-

mation a parallel diffusion coefficient exists and propagation parallel

to the mean field can be approximated by a Markovian process.

Approximations to the Integral for < (A1)
2 >/At

The integral in (1) is quite complicated and therefore is probably

not of much practical value unless it can be simplified by further

approximations. At high energies, where s <<1 , simple approximations

to (1) are possible and most theories agree that the resulting diffusion

coefficient has a rigidity-squared dependence (e.g. Jokipii, 1966;



Klimas and Sandri, 1971). At low energies, where e>>l, valid

approximations to (1) are more difficult to obtain. However, it is

in this regime that it is most important to know <(Ap)2 >/At since

in the interplanetary medium galactic cosmic rays that experience sig-

nificant modulation and most solar cosmic rays should satisfy e>> 1.

Jokipii (1966) suggested that when e>> the integrand in (1)

could be expanded in powers of 1/e. To lowest order, then, the terms

containing a(r/Xc) were neglected and b(r/Xc) was evaluated at r/Xc = PX

or (1) becomes

< (Ap)2 > 2(1-C )TPe2v "d ex

At d'cos b(X') (6)

The integral in (6) is simply proportional to the one-dimensional

power spectrum of fluctuations in the component of the field perpen-

dicular to the mean field direction, evaluated at the resonant wave

number kXc /p, or

< ()2I 2rr(l- 2)12ev P(k=l/rg) (7)

At XIj

A similar expansion is implied in the work of Hall and Sturrock (1967)

(cf. Equation 3.11 in their paper).

This approximation technique, however, is unlikely to be valid

except for certain special forms of the correlation function (not the

isotropic case considered here). By neglecting terms containing

a(r/Xc) in (1) and evaluating b(r/Xc) at r/Xc = pC, we are in effect

making a guiding center approximation. We evaluate the correlation

function only at the particle's guiding center, or equivalently we
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assume that knowledge of the field at this point is sufficient to deter-

mine the field as seen by the particle. This approximation should work,

however, only if the field varies slowly on the scale of a particle's

gyro-radius. Yet in our final answer (6) and (7), < (Ap)2 >/At is de-

termined by a resonant interaction in which a particle responds only to

fluctuations that have a scale-size on the order of a gyro-radius.

We can see the difficulty with this approximation by examining

(1). For large e, the cos(eX) in the term b(r/Xc)cos(eX) varies rapidly

with X between positive and negative values. Thus, as the integrand adds

to form the integral, considerable cancellation will occur between these

positive and negative parts. To determine <(Ap)" >/At, then, we must

know the integrand to higher accuracy than results from performing an

expansion in powers of 1/ and keeping only the first few terms.

Mathematically this is a common problem where a valid asymptotic ex-

pansion of the integrand does not necessarily lead to a valid

asymptotic expansion of the integral.

Jokipii (1972) has shown that there are special cases of the cor-

relation function for which (6) and (7) are valid. If t1E field

fluctuations vary effectively only with distance along the mean field

direction, then the correlation length perpendicular to this direction

is essentially infinite. In this case our objections to the guiding

center approximation used in deriving (6) and (7) no longer hold, since

now knowledge of the field at the guiding center is sufficient to

specify the field as seen by the particle. It is debatable, however,

as to whether actual interplanetary fluctuations have such an aniso-

tropic correlation function.
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In general, then, it does not appear that we can determine

< (,A)2 >/At in the limit of large e by making a simple approximation to

the integrand in (1), and we must thus apply numerical and analytic

techniques to a study of the complete integral. We use in these studies

a fairly general form of the correlation function, which results in

power spectra that are in rough agreement with observed spectra. We

take

a(r/Xc) = 6c V3/2(r/c )  (8)

and

b(r/X ) = 2 [K 2(r/Xc) - r K-3/ 2 (r/ )] (9)c 3r (v-1) 2Xc/

where F(z) is the gamma function and K,(z) is a modified Bessel function

of the third kind and index v. By applying the appropriate Fourier

cosine transforms to (8) and (9) (see Batchelor, 1957), we find that

the corresponding one-dimensional power spectrum for fluctuations in

the field component parallel to the mean field direction is given by

(v)Xc
P11(k) F ( (1 + (kX)c) -) (10)

and the corresponding one-dimensional power spectrum for fluctuations

perpendicular to this direction is given by

P'(k) = P(k) + 2(kXc) (11)

We must choose v here to be greater than 2 so that there is finite

energy in the field fluctuations (we could choose v <! and impose a
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cutoff in the power spectra at high frequencies without altering

our results). However, since we can choose v within the range, e.g.

1/2 <v< 3/2 these Dower spectra can be adjusted to give a good fit to

observed spectra (cf. Jokipii and Coleman, 1968; Sari and Ness, 1969,

1970).

Using the a(r/Xc) and b(r/Xc) given in (8) and (9) respectively,

we have integrated (1) numerically for a wide range of values of e, v

and p. In the regime e b 1, we find that, to a good approximation (for.

P> 0)

< (Ap)2> 2T (l-p2)Jeev
x2 P (k = l/Prg) (12)

At c

where P (k) is given in (11). That is, the actual <(Ap)2 >/At for this

correlation function differs from < (CA)2 >/At given in (7) (due to

Jokipii (1966, 1971)) only by a factor of 4 In Figure 1 we have plotted

the ratio of < (Ap)2 >/At that results from our numerical calculations to

< (A4)2 >/&t that results from (12) versus i, for e in the range

~Ie! <10 and v in the range 3/ 4 v 5/ 4 . As can be seen in this figure

to a good approximation this ratio simply equals I: (p 0).

For this general correlation function, then, the answer for

< (Ap)2 >/At due to Jokipii (1966, 1971) is numerically not significantly

different from the actual answer, at all except very small values of p.

It must be emphasized, however, that to a great extent the success of

(7) is fortuitous. The function b(r/Xc) evaluated at the full r/Xc

given in (3) is frequently an order of magnitude larger than b(r/Xc)

evaluated simply at the guiding center r/Xc = pX. This result disproves

the conjecture by Jokipii (1971) that higher order corrections to b(X)
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can be neglected for v<1. The terms a(r/X), which are neglected in

Jokipii's approximation, are actually of the same order of magnitude as

the full b(r/Xc) terms, but are of opposite sign. The various terms in

(1) simply add in a complicated manner to form the < (Ap)2 >/At which is

given in (12).

We have also studied (1) analytically. In Appendix C to this

paper we derive the exact analytic expression for the < (A4) >/At that

results from using the correlation function given in (8) and (9). In

the limit that e2 /p2>>l this expression reduces to

< (Ap) > 4 F(v + 3/2) Tve2 ( - 2V

At 3 F(v - 1/2) Xc

m-2v (m,,y) (13)

+ (1- 2) [g(m + l,v,y) + g(m - l,v,y)]1
2p42

where

g(m,v,y) = ym (m + F/2)F(v + I - m) ,F2 (m + 1/2; m - v, 2m + 1; y)
F(v + 3/2)F(2m + 1)

(14)

y+1F(m-l)+ (+2m) F2 (v + 3/2; v + 2 + m, v + 2 - m; y)
F(v+2+m)

and y = m(l- 2 )/p 2". The function 1 F_ (o; B,y; y) is a generalized hyper-

geometric function. It can be seen in Appendix C that the sum over m in

(13) is a sum over harmonics of the resonant wavenumber kXc = e/p.

The e-dependence of (13) is particularly simple and has the same

functional form as the e-dependence given in (12)(for large e).



Although we can verify (12) numerically only for 4e410, we can conclude

by using (13) that (12) should hold for arbitrarily large values of e.

The dependence of (13) on p and v is contained in the complicated sum-

mation over hypergeometric functions; a summation that does not appear

to simplify in any meaningful way. To the best of our knowledge, these

generalized hypergeometric functions are not special cases 
which reduce

to simpler functions, nor does it appear likely that the hypergeometric

functions can be combined in any simple manner. For example the two

hypergeometric functions which appear in g(m,v,y)(1
4 ) are linear inde-

pendent solutions to the same differential equation. 
Of course, we can

always calculate the hypergeometric functions in (13) and (14) by using

numerical techniques. Upon summing typically over the first ten har-

monics, we can verify that in the range 3/44 v 5/4 and p > 0, < (Ap) 2 >/At

given in (13) is well approximated by <(Ap)
2 >/At given in (12).

The extra factor of p in (12) as compared to (7) can have a sig-

nificant effect on the pitch angle averaged diffusion coefficient in

certain averaging schemes. Recently, Earl (1973) has argued that

<(Ap) 2 >/At should be averaged over pitch angle to form K by use of

the formula

K = V2 ,1 (- )d d4' (15)
S 1 o < (AP)2 >/AtI

rather than by use of (5). The averaging scheme in (15) was originally

suggested by Jokipii (1966). However, as can be seen by substituting

(12) into (15), for any v21/2, the first integral in (15) will tend 
to

diverge at its lower limit, =O0. That is, KII as determined from (15)
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does not appear to exist for any power spectra which have the general

form given in (10) and (11) and which have finite energy in the field

fluctuations. We should perhaps be skeptical then about this averaging

technique. More probably, we should be skeptical about the ability of

our theory to adequately treat the behavior of particles with pitch

angles near 900 (4 -- 0). In quasi-linear theory, particles resonate

only with fluctuations at wavenumber k = I/prg. As p - 0, the reso-

nant wavenumber tends to infinity, P.(k = 1/urg) -* 0 and thus

< (A)" >/At - 0 (exactly at p=0, < (64) >/At 1 0, as we shall discuss).

However, if we were to improve quasi-linear theory with, for example,

some resonance broadening technique (Duprey, 1966; Weinstock 1969;

Jones et al., 1973; V'lk, 1973) then we should expect that .<(A4)2 >/At

would remain non-zero as p--0 and the divergence in (15) disappears.

The Behavior of < (a)1 >/At at 4 = 0

Finally, we comment that theories which use the quasi-linear and

adiabatic approximations for isotropic turbulence predict neither

< (Ap)2>/At=0 at 1 =0(e.g. Jokipii, 1971), nor a continuous divergence

in <(Aj) 2 >/At for small p (Hasselmann and Wibberenz, 1968). In Ap-

pendix D to this paper, we show that for an arbitrary isotropic

correlation function, to lowest order l/e, (1) predicts that

< (L[1) 2 > rr TP v CO
= 8(p) dkkP11(k) at 4 = 0 (16)

At 2 0

where 6(p) is a delta function.

We can obtain an expression valid for all e by following the tech-

niques outlined by Hasselmann and Wibberenz (1968) where the perturbation
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magnetic field rather than the correlation tensor is expressed as

a Fourier transform. Hasselmann and Wibberenz obtain an incorrect

result because of an error when integrating over the wave-number

phase angle (V5lk, et al., 1973). In Appendix E to this paper we

apply these techniques correctly, and obtain for p= 0 :

< (6kt)2 > TT (e)2 () d d

S8(p)v dkP (k)[3--(kXc/c) + k-- (kXc/e (17)
At 2C dk dk2

where

(x) -J 1
2 (x) - Jo(x) J 2 (x)

and the Jm(x) are ordinary Bessel functions of the first kind.

We note that (16) and (17) do not describe a resonant interaction, but

rather a particle responds here to fluctuations at all wavenumbers. As

a particle spirals along its orbit it will of course experience gra-

dients in the field due to all fluctuations, and it will have its

pitch angle altered as a result of these gradients. In quasi-linear

theory, however, the effects of these gradients at one point in a par-

ticle's orbit will in general be cancelled by the effects of the

gradients at some other point further down the field, so that for 4~0

< (AP)2 >/At0 as At o. Of course, the one exception to this cancel-

lation comes from fluctuations at the resonant wavenumber, which can

give rise to an accumulated change in the pitch angle, i.e. < (A) 2 >/At

remains non-zero as At- -. For P=0, however, quasi-linear/adiabatic

theory requires that a particle simply remains in one position along the

mean field for infinite time. A particle, then, experiences the field

gradients only at this one point, no cancellation of the type described
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above will occur for any wavenumber fluctuation, and < (&A)2 >/At tends

to infinity according to (16) and (17). We note further that this delta-

function at p=0 will not remove the divergences in (15) that occur in quasi-

linear theory; rather this delta function makes the integral poorly

defined. Also, this delta-function will not occur in Jokipii's special

case (Jokipii, 1972) where the correlation length perpendicular to the

mean field direction is infinite. A particle with Cp=0 experiences a net

change in the random field component perpendicular to the mean field direction

during its circular orbit, only if the random field along the mean field

direction is changing with distance. That is, for a p = 0 particle to

be affected by the random field on the average, P (k) must not be iden-

tically equal to zero, which is the case in these infinite correlation

length models.

We do not wish to imply that this delta-function should necessarily

be a part of a physically realistic derivation of < (Ap)2 >/ At. However,

the physics that gives rise to this delta function (i.e. changes in

field magnitude, Pll(k)0O) must be taken into proper account.

Concluding Remarks

We have shown that despite apparent differences most theories which

are based on the quasi-linear and adiabatic approximations yield the same

basic integral for < (Ap)2 > / At for the case of homogeneous, isotropic

field fluctuations. For example, the theories due to Jokipii (1966,

1971) and to Klimas and Sandri (1971, 1973a,b) yield the same integral.

We have also shown, however, that this integral in most cases has been

evaluated incorrectly in the past. For values of p near unity, these
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previous evaluations fortuitously yield values of < (Ap)
2 >/At close

to the actual values. As p~-0, however, the errors in previous evalua-

tions become more significant, and at p = 0 the actual < (Ap)2 >/At

contains a delta-function which to date has been overlooked.

We should of course be dubious as to whether the quasi-linear and

adiabatic approximations can be applied for dealing with particles at

p near zero. As a result, the corrected quasi-linear/adiabatic theory

presented in this paper is not expected to be a physically 
realistic

theory for all p particles. With a small change in field strength small

p particles can reverse direction, in violation of the quasi-linear ap-

proximation. These particles also move relatively slowly along a

correlation length, and thus there is no clear separation between the

time-scale for a 'scattering' of a particle and the relaxation time of

the particle distribution function, as is required for the adiabatic

approximation to hold. No doubt for particles with small p, quasi-

linear/adiabatic theory should be modified, and replaced by a theory

that treats the particle trajectories in a more realistic manner.

Due caution, however, should be exercised in making any corrections

to quasi-linear/adiabatic theory. We note in particular that none of

the difficulties in evaluating < (A)
2 >/t that we have pointed out in

this paper arise in models where the correlation length perpendicular to

the mean field is essentially infinite (in at least one direction). Such

models have been considered recently in some detail by, e.g., Jokipii

(1972, 1973), Jones, et al. (1973),V61k (1973),and V61k, et al., (1973).
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In any physically realistic model, however, where P (k) is not

identically zero, the corrections pointed out in this paper are expected

to be important. In particular, quasi-linear/adiabatic theory will pre-

dict a delta-function in < (Ap)2 >/At at p = 0. Any modifications to

quasi-linear/adiabatic theory that are developed by using one of these

infinite correlation length models will be hard pressed to deal effecf

tively with this delta-function. As a result, such modifications are of

doubtful importance for the development of a physically realistic theory

kr the behavior of particles with i near zero.

We note also that current quasi-linear/adiabatic theory is not ex-

pected to yield accurate pitch angle averaged diffusion coefficients

(KI ) even though the inadequacies in the current theories may occur

only in a narrow range of pitch angles around p,=0. We saw above that

the extra factor of 1 that we found in < (Ap)2 >/At caused one of the

averaging schemes for forming KII (cf. Equation (15)) to diverge as p-0.

It can also be shown that for reasonable power spectra, the other avail-

able averaging scheme (Equation (5)) is dominated by the contribution

from the delta-function, at low rigidities (Klimas and Sandri, 1973c).

In conclusion, then, no complete theory appears to be available

at this time for accurately determining cosmic-ray diffusion coefficients

from observed properties of the interplanetary magnetic field.
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Appendix A

Following Jokipii (1966), we calculate < (A) 2 >/At by using the

Lorentz force equation

dv q
- = - (vL x B) (A.1)
dt mc

Here v and vI are particle velocity parallel and perpendicular to the

mean field direction, respectively; q is particle charge; c, the speed

of light, and m, the relativistic particle mass. The magnetic field per-

pendicular to the mean field is considered to have a random component

which is denoted by B1 and which has components Bx and By in a Cartesian

coordinate system with z-axis along the mean field. 'The average value

of B , <B >, is zero. (Angular brackets hereafter denote ensemble

average.)

To make ready use of (A.1) we must make the so-called quasi-linear

approximation. We assume that the interaction between the particles and

the random field is sufficiently weak so that to the lowest order of

interest a particle executes an unperturbed helix about the mean field

while interacting with the random field. Then, v on the right side of

(A.1) is given simply by

vj = v(ey coswt - exsinwt) (A.2)

where ^x and ey denote unit vectors in the x and y directions, respec-

tively; v1 is constant, independent of time; and, w = qBo/mc is the

gyro-frequency of a particle in the mean field Bo . According to Klimas

and Sandri (1973a)the quasi-linear approximation should hold for e 1

provided that e
2 f2 <<1, where e is the ratio of the correlation length

for field fluctuations (Xc) to a particle's gyro-radius, and T is the
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ratio of the mean square field strength to the mean field strength

squared. At low rigidities, where e l, Klimas and Sandri (1973a) argue

that the criterion for the validity of the quasi-linear approximation is

only that TP <<1, provided that the particles are of sufficiently small

pitch angle so that they do not mirror.

By using (A.2), the mean square change in a particle's pitch angle

which occurs ina time interval 0 to At can be obtained simply by inte-

grating (A.1) twice, or

< (AVll)2 >

v2

W 2vU2  A t At-t

-
2  dt Y dt'[cos wt cos wt'Cxx(t,t')

+ (cos wt sin wt' + sin wt cos wt') Cxy(t,t')

+ sin wt sin wt' Cyy(t,t')] (A.3)

Here, we have replaced <Bi (t)B (t')> with the corresponding compo-

nents of the two-point correlation tensor for field fluctuations.

<Bi(R)Bj(R + r(t,t'))>

C.i(r(t,t')) = (A.4)

The field fluctuations are assumed to be homogeneous, so that Cij is

independent of some arbitrary pbsition vector R and a function only

of r(t,t'), the vector separating a particle's position at time t and

at t'.

In the next step in our derivation we change variables in (A.3)

from t and t' to t and T = t'-t, and then we reverse the order of inte-

gration. After a considerable amount of tedious but straightforward

algebra, we find that (A.3) becomes



< (64)2 > 2 dT dt (Cxx + Cyy)

+ (cos WT cos 2Wt - sin yry sin 2ut)( Cx x 2 )

,+ (sin WT cos 2Wt + cos WT sin 2wt) C

At Fc o s WT

+ dt WT (Cxx + Cyy)

+ (cos Wcos 2wt + sin wT sin 2wt)Lxx - C

+ (cos CUT sin 2wt - sin WT cos 2wt) Cxy]} (A.5)

If we further assume that the fluctuations are isotropic, then

Cij (r) = b(r) 6ij + a(r)rirj (A.6)

where a(r) and b(r) are arbitrary even functions of the scaler

separation r, which in turn is a function only of T given by

2v 2
r2 (T) = V 2 T2 + V (1 - cos WT)

= vl T + P2 (T)Xc2 (A.7)

The first integral in (A.5), then, can be done exactly; it is inde-

pendent of a(r(T)) and b(r(T)) and involves integrating only simple

trigonometric functions. The resulting terms are either linear in

(At - T) or proportional to l/w. These latter terms can be neglected and

we find that

U2 V 2 T At< (A-)2> v - dr

(At - T)[cos wT[a(r(T))p 2 Xc+2b(r(Tr))] - a(r(T)) p2Xc2 ] (A,8)
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Finally, we make the so-called adiabatic approximation. The

integrand in (A.8) is assumed to fall-off with a characteristic time

T, so that for At>> , we can approximate At-T as At and extend the

upper limit of integration to infinity. In terms of a dimensionless

time X = v /Xc , (A.8) then reduces to (1).
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Appendix B

In this appendix we show that the result of Klimas and Sandri

(1971, 1973a,b) for K11 can be expressed in the form given in equation

(4) of the text.

Upon replacing Klimas and Sandri's characteristic length Xp with

our Xc (Xp = Jb Xc/6), we see from equation B.4 in Klimas and Sandri

(1973b) that these authors find that

1 v c 1
K v 1 (B.1)

II 3 TP e2A

By using equation B.3 in this same paper, and equation 3.19 in Klimas

and Sandri (1971), we find that

A = dX[2JL(e,X) cos (eX) - 8X2I1(e,X) (B.2)S(B.2)

where, by using equations (3.22), (3.24), (3.15), and (3.16) in this

latter paper,

3 1

J = 2 odp b(r/Xc)(-12 )  (B.3)

and

31
I = dp a(r/X )(1-p2)2 (B.4)

We note here that in Klimas and Sandri's notation, our a(r/Xc) and

b(r/Xc) are B(r/Xc) and A(r/Xc), respectively. Finally by substituting

(B.2), (B.3) and (B.4), from above, into (B.1), and upon reversing the

order of integration, we obtain (4).
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Appendix C

In this appendix we evaluate analytically < (A&)2 >/At when the

power spectrum of magnetic field irregularities is given by eqs. (10)

and (11). Starting from (1) we have

< (Ap) 2 >/At = (l-2)PCv (C.1)
hc

where

I = dX (coseX[2b(r/Xc) + a(r/Xc)p2]- a(r/Xc)p 2 j (C.2)

and

r 4(1-p2) 1-r = 2x2 + sin" = (= 2X + p2 ). (C.3)

Xc Le 2) (c

Because r, a and b are such complicated functions of X, (C.2) cannot

be integrated directly. One possible approach would be to transform

a and b into three-dimensional Fourier-transforms of the power spectra.

The functional dependence of I on r would be contained in terms propor-

tional to exp i k.r and no terms would be functions of Irl. However,

because it is not possible to write the last term in (C.2) in terms of

the correlation tensor, we proceed by first transforming I into a new

coordinate system in which the magnitude of r remains unchanged, but

the components are

r z  r x  ry
- =h, -=, = 0 (C.4)
Xc Xc Xc

We can now define an isotropic correlation tensor Rij(r) with com-

ponents

Rij(r ) = b(r/c)8ij + a(r/X)rirj (C.5)
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so that

Rxx = b(r/Xc) + p2a(r/Xc) (C.6)

RY = b(r/X )

If we identify the scalar functions a and b in (C.5-6) with a and

b in (C.2), we have

I = 0d[cos(eX)(Rxx + Ry) - (Rxx - R yy)] (C.7)

The components of the tensor Rij(r) can be expressed as three-dimensional

Fourier-transforms of a power spectral tensor Pij:

Rij(r) = dk Pij(k) e -ik- (C.8)

so that

-oikr ik.r
I = dX ie [dk+(P + Py)e ik] - dk(Pxx Pyy)e ik (C.9)

We now interchange the order of integration, and write

k*r = kz2cp + kX c sin(eX/2) (C.10)

where p'= (l-p)f. The integration over X can now be performed by making

use of the following identity

eiz sin p = C ei PJm(z) (C.11)
m=-m

where Jm(z) are the Bessel function of the first kind.

Therefore (C.9) becomes

I nE dk [(P + Pyy) Jm (2p'kxX /c)6[kz X e(l-m/2)]

(Pxx - Pyy) Jm ( 2 p'kx c/e)6[kzXc P + me/2]-. (C-12)
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Note that Pxx and Pyy are even functions of kx , so that the sum in

(C.12) is non-zero only for even m. Therefore, after integrating over

kz, the integral can be written as

4- +- (C.13)

I=- E dk dk (Pxx(J2m+2 - Jm +yy(Ja 2 + Jm)I =m
XC m= - 1 - k z =

In general, the Pxx and Pyy are given by (Batchelor, 1956)

E(k)
P..(k) = -- (k26. - k.k.)  (C.14)

13J 4nk* U 1J3

where

E(k) = k[T 1 dP I) (0.15)

and P is given by eq. (10). One should note that this definition of P

ensures that a(r/Xc) and b(r/Xc) are given by eqs. (8) and (9.). The inte-

gral over ky can now be performed with the result

4F(v+3/2)e 2 Xc -3/2 2p'kxXc

3(v-/2) m2  dk x (1+ (kxc) 2 +m=o 0

+ 21Jm- IkX) + (+ 2kxc)]f (C.16)
2 e

where we have rearranged the summation so that it extends only over

m>0. For non-zero 4, the m=0 term is zero. That this term is in fact

a delta-function is shown in Appendix D. (For non-zero m, each term in

the sum equals zero for =0.) We now restrict ourselves to 0 and

drop the m=0 term. The remaining integral over kx can also be performed

(Gradshteyn and Ryzhik, 1965) so that
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4r(v+3/2)T 2 ve< (Ap)2 >IAt =

3r(v-1/2) Xc

m= ( (1 + m2e2/p~)-V-1 g(m,v,y) +

242 [g(m + 1,v,y) + g(m - 1,v,y) (C.17)

where g(m,v,y) is defined by eq. (14) with

(1- ~)
Y -e2 (1 + m2 e 2 / p ). (C.18)

In the limit of low rigidity (e>>l), (C.17) reduces to (13) in

the text.
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Appendix D

We can derive (16) by expanding <(A) > in (1), in powers of l/e;
At

i.e., in powers of the gyroradius. We have demonstrated that this pro-

cedure does not produce a rapidly converging series for the resonant

interaction, but we will see here that a true power series in (1/e) 2

can be obtained for the delta-function term. As a demonstration, the

first correction to (16) will also be constructed. In Appendix E we

derive this delta function term from a different point of view for all

r r
The two functions, a(-) and b(-), which appear in (1) for

Xc Xc
< (Ap) 2 >

are not independent of each other. From V *B =0, it
At

follows that

Co 2

b(- 2 dxx a(x) - (-) a() (D-1)

Xc r/Xc Xc Xc
c

which we substitute into (1) to give

< (A)2 > (l- 2 )TPC 2v r r
At =2 ' dX[cosex 2 dxx a(x) - (T-) a(- +

At X c r/X c  c

1 r
(cos - 1)2 (1 - ~) a(--)] (D-2)

2  Xc

We now construct the Taylor Series expansions of a(-c) and

I(r) - dxx a(x) (D-3)

Xc r/Xc

in powers of ro 2 = - (1 - cos eX). The results of these expansions

are,



I (-) = I(p) - r '(-142) a(h) +
c 0

S- (1 )  a'(h) + "'" (D-4)

and,

a(-r) = a(p ) + r o(-E-l ) a'(pX) +

0  (-)X [a"(pk) X ] +

These expansions are uniform in 4 and X for O~pil, and O<X ".

Upon substituting these expansions into (D-2) we are able to construct

the series,

< ( -) > _ < (A2) >I 1 2 <(Ap)2
> 4 i <(A >) 2  + (D-6)

At At o e At 2 + At +

It should be noted that the coefficients in this expansion are functions

of e; as it stands at this point, (D-6) is not a simple power series

expansion in I/e.

The leading term in (D-6) is given by,

At = 2 ld cos (--) b() (D-7)
t o o

or, in terms of P.(k),

< (Ab)_ > (1-_2 )T E:v 1

At (k - ) (D-8)At Xc2 po c ~rg

These are alternate expressions for Jokipii's (1966, 1971) approxima-

tion to the resonant interaction given in (6) and (7).
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The next term in (D-6) is given by,

< (A)2> = (l-p2)eTl2v lim f dX [(a(pX) + pL a'(pX) ) + (D-9)
At c  o

- 2 cos(eXX2 a(pX) + pX a' (pX) ) +cos(2eXX3 a(p) +pX a'(pA) )]

The limit bn T is included here to ensure that the change of integration

variable, from X to r = X, which we are about to introduce, is carried

out correctly. The last two terms in the integrand of (D-9) contribute

to the resonant interaction discussed fully in the main text. Thus we

ignore these terms here, and study the first term which represents the

leading contribution, in l/e, to the delta function term. This contri-

bution is given by,

< (&)2 >I (1- 2 ) Tr 2v d
.= lim f dr -- (r a(r) ) (D-10)

At X c T -+ o dr

or

< (AP) > 1= (1-2)Tfe2 v lim T a(pT) (D-11)

At 2 c T-.m

If a(r)-0 as r-m, faster than l/r, then, for p=0, lim T a(pT) = ,a(O)

lim T=-. But, for pVO, lim T a(pT) = 0. Furthermore,

T O TD1O

1d lim T a(pT) 
= lim F dr a(r) = . dr a(r) (D-12)

o T *co Tco o o

Thus, as a function of p, lim T a(pT) is zero for all p>0, is infinite

T-+m

at p=0, and can be integrated to give a finite, non-zero 
number, i.e.

it exhibits all the properties of a delta function, or
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At a Tc 8(p) dr a(r) (D-13)

In terms of the power spectrum,

< _2 > TTI 2 V 00

At la 2 6 (W) dk kP11 (k) (D-14)

If we once again drop the contributions to the resonant interaction

in the fourth order term in (D-6), we find,

<(A,,) 2> l-)rev li dX a"([X) (D-15)
At 4 Xc To

c. o

For homogeneous turbulence in continuous fields, we must have a'(0) = 0

(Batchelor, 1956). Therefore,

< (A )a > (1-kL2) Jfe2v lim a'( T)
At 4 T T ( ) (D-16)

Finally, using reasoning similar to that presented above for the

leading contribution to the delta function term, we find,

< (A )2 > e2ev a'(r)
t 4 6() dr - (D-17)At 14 c o r

Since a'(r) is proportional to r for small r, the integral in (D-17) is

finite. Equation (D-17) gives the 0(( ) ) term in a power series expan-

sion of (D-6). Rather than continue this calculation to higher orders

we present in Appendix E a different procedure which gives the delta

function term for all e.
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Appendix E

We calculate below an alternative expression for the Fokker-Planck

pitch angle scattering coefficient for isotropic turbulence and show

that at p =0 it is proportional to a delta-function to all orders in e.

We again begin with the equation of motion (A.1) and Fourier transform

the random component of the magnetic field. One again uses the iden-

tity (C.11) so that

(e,) T T E(k) c iklliXcp(XX')
< (A)> =dX I dX' k n=-Ydk m=E-Z e

4 0 n=- o= m-

eie(nX-mX') e-i (n-m) Jn(k±Xcp ') Jm k ic)

rcose(x-X') - 2 sin(-eX)sin (-eX')] (E.1)

where E(k) is given by (C.15), _-(l-p2)2 and * is the wave-number

phase angle. The integrals over , X, and X' can be readily performed

using the standard adiabatic approximation (cf. Appendix A) with the

result

< (Ap) > n E(k) +-
-(e ') 2 v rdk±kiL dk Z6(PIc+ me)At 2X o k2  m=-m

J£ k elc ' k ec -2-- kc- (E{Jm(kj_±Xcp) + 2 fw)2 i )1 } (E.2)

For p 0 one can readily integrate over k l. However, we want to in-

vestigate (E.2) when p=0. In this case we transform to polar

coordinates and note that only the m=0 term in the summation is non-

zero at p =0. One can integrate over polar angle, leaving
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______ -~ 6(p) f dk Jz 2  - Jo(kX/) J 2  . (E.3)
At 2Xc" o k e e

Using the definition of E(k) one arrives at (17).
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Figure Caption.

The ratio of the exact numerical integration of (1) (<(AL)2 >/At)

to the approximate result (7) due to Jokipii ( < (A) 2 >/At)j is plotted

against fJ ( f0) for various values of e and v. To a good approximation

the exact result is smaller than the approximate result by a factor of
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